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Abstract

A kicker modulated at the residual betatron tune of the beam is proposed
for the removal of beam particles in the bunch gap, which, otherwise, will trap
electrons leading to e-p coupled-beam instability. The beam dynamic is derived
analytically and the implication discussed. Applications are made to the Los
Alamos Proton Storage Ring (LANL PSR) and the Spallation Neutron Source
Proton Storage Ring (SNS PSR).
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1 INTRODUCTION

In high intensity proton storage rings such as the LANL PSR and the SNS PSR,

some protons experiencing large space charge may overcome the focusing provided by

rf and drift into the bunch gap. Once inside the gap, these protons can trap electrons

and initiate e-p instabilities [1, 2]. To clear these protons, we suggest the use of a

kicker that gives a kick of a certain length of time to only those protons in the gap.

To facilitate proton clearing, the kicker voltage should be modulated at frequency

[νβ]f0, where f0 the revolution frequency and [νβ ] is the horizontal/vertical residual

(or nonintegral part of) bare betatron tune of the storage ring if the kicker under

consideration is a horizontal/vertical one. In this way, the protons in the gap will be

kicked resonantly and will be deflected towards a collimator system in the beam pipe.

There is a spread of betatron tune in the beam particles because of amplitude

detunings and chromaticities. To accommodate the tune variation, the modulated

tune in the kicker should also have a spread. Here, we are going to study the particle

response to the kicker having a modulated tune spread. Analytical expressions are

derived, from which results can be understood easily and the kicker parameters can

be chosen.

2 THE BEAM DYNAMICS

The transverse position of a particle is represented by its transverse displacement

x and transverse angular displacement x′ = dx/ds with respect to the designed orbit.

Here s is the longitudinal distance measured along the closed orbit from some point

of reference. Let the normalized displacement coordinates be written as a complex

number ~X so that betatron motion will be a circle in phase space [3]:‡

~X =

(
x√
βx
,
βxx

′ + αxx√
βx

)
, (2.1)

where βx and αx are the Twiss parameters at the location under consideration. In

this convention, from location 1 to location 2, where the Floquet phase advance is Ψ,

‡In Ref. [3], only a single location at the ring is referenced. Therefore, the representation ~X =
(x, βxx′ + αxx) can be used and it transforms as Eq. (2.2). Here, there is more than one location,
the kicker and the collimator, and the representation in Eq. (2.1) must be used.
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the complex displacement is transformed according to

~X1 −→ ~X2 = ~X1e
−iΨ . (2.2)

Let us start with the particle having displacement ~a0 just before entering the kicker.

After passing through the kicker, the displacement is changed by ∆ ~X0. After one

turn when the particle arrives back just before the kicker, the displacement becomes(
~a0+∆ ~X0

)
e−i2πνβ1, where νβ1 is the betatron tune of the particle in the first turn. The

particle receives a displacement modification ∆ ~X1 when crossing the kicker and arrives

at the collimator which has a phase advance φ upstream. The particle displacement
~X1 at the collimator after one turn with two kicker traversals is therefore

~X1 =
((
~a0 + ∆ ~X0

)
e−i2πνβ1 + ∆ ~X1

)
e−iφ . (2.3)

Thus after N turns around the ring, the particle, after traversing the kicker N+1

times, arrives at the collimator with the displacement

~X
N

=
((

· · ·
((
~a0 + ∆ ~X0

)
e−i2πνβ1 + ∆ ~X1

)
e−2πνβ2 · · ·

)
e−i2πνβN−1 + ∆ ~X

N

)
e−iφ ,

(2.4)

which can be written more conveniently as

~X
N

= ~a0e
−i2π∑N

j=1 νβj−iφ +

N∑
`=0

∆ ~X`e
−i2π∑N

j=`+1 νβj−iφ . (2.5)

Equation (2.5) indicates that the position of the particle at the collimator afterN turn

is just the linear superposition of the evolution of the original particle displacement,

the evolution of the zeroth-turn kick of the particle, the evolution of the first-turn

kick, etc. If we assume that the betatron tune seen by the particle is the same for all

turns, i.e., νβj = νβ for all j, Eq. (2.5) can be simplied to

~X
N

= ~a0e
−i2πNνβ−iφ +

N∑
`=0

∆ ~X`e
−i2π(N−`)νβ−iφ . (2.6)

The Hill’s equation governing the motion of the particle is

x′′ +Kx(s) =
∞∑
`=0

(∆x′)k cos
(νs
R

+ ψ0

)
δ(s− 2π`R) , (2.7)
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where s is the distance measured along the ring from the initial position of the particle,

E is the total energy of the particle, and R is the radius of the ring. Here, (∆x′)k
is the amplitude of the angular kick provided by the kicker. For an electric kicker,

we can imagine the kicker to be composed of two parallel plates with a transverse

electric field E , and be turned on for a short duration ∆/(βc) where βc is the particle

velocity and c the velocity of light. Then

(∆x′)k =
eE∆

Eβ2
. (2.8)

For a magnetic kicker with magnetic flux density B, we have instead

(∆x′)k =
eBc∆

Eβ
. (2.9)

In Eq. (2.7), a short kick duration or ∆ � 2πR has been assumed. However, this

assumption is merely for the sake of simplicity so that some analytic expressions can

emerge. The kicker shows a modulation tune ν and a modulated phase ψ0. Thus,

crossing the kicker for the `-th time introduces a kick of

∆x′ = (∆x′)k cos(2πν`+ ψ0) . (2.10)

The transverse displacement x is unchanged if the kicking time ∆/(βc) is infinitesi-

mally short. Therefore, in the `-th crossing of the kicker, the particle displacement is

changed by

∆ ~X` = i(∆x′)k
√
βk cos(2πν`+ ψ0) , (2.11)

where βk is the betatron function at the kicker. Now Eq. (2.5) takes the form

~X
N

= ~a0e
−i2πNνβ−iφ + i(∆x′)k

√
βk

∫
dνf(ν)

N∑
`=0

cos(2πν`+ ψ0)e
−i2π(N−`)νβ−iφ ,

(2.12)

where we have introduced a spread in the modulation tune of the kick to accommo-

dates particles with slightly different tunes due to amplitude detunings and chromatic-

ities. The modulation tune distribution f(ν) is normalized to unity. This distribution

is centered at ν0 with spread ±∆ν, and ν0 should be chosen to be the average tune

of the particles in the bunch and ∆ν should be chosen to be the tune spread ∆νβ in

the particle bunch. In this way, the tune νβ of a bunch particle will always be inside

the distribution f(ν) so that the particle will be kicked resonantly.
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It is clear from Eq. (2.12) that only the residual or nonintegral part of the particle

tune [νβ] is relevant. Therefore, the tune component of the kicker can be chosen as

close to [νβ] instead. Such a choice enables us to employ a much lower modulation

frequency for the kicker. Thus, the particle tune νβ we reference below should be

interpreted as the residual tune.

3 GAUSSIAN TUNE SPREAD IN KICKER

Let us assume a Gaussian distribution in tune spread in the kicker, or

f(ν) =
1√

2πσν
e−(ν−ν0)2/(2σ2

ν ) , (3.1)

where σν is the rms tune spread. The integration over ν gives

~X
N

= i(∆x′)k
√
βk

N∑
`=0

cos(2πν0`+ ψ0)e
−(2π`σν)2/2e−i2π(N−`)νβ−iφ , (3.2)

where the initial displacement ~a0 has been set to zero. We are interested mostly in the

envelope of the particle displacement from the resonant kicker. Thus, the summation

over revolution turns can be approximated by an integral. We obtain, in the closed

form,
~X

N
= i

√
βkεk

[
F (a, y

N
)e−iψ0 + F (b, y

N
)eiψ0

]
e−i2πNνβe−iφ , (3.3)

where the envelope function, F (a, y
N
) is given by

F (a, y
N
) =

2√
π

∫ y
N

0

e−y
2−i2aydy = w(a− iy

N
)e(a−iyN

)2−a2 − w(a) , (3.4)

with w(z) being the complex error function,

a =
ν0 − νβ√

2σν
, b =

−ν0 − νβ√
2σν

, (3.5)

representing the particle tune offset from the center kicker tune ±ν0, and

y
N

=
√

2πσνN (3.6)

representing the turn number. The kicker strength is represented by the dimensionless

variable

εk =
(∆x′)k
4
√

2πσν
. (3.7)
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Obviously, the kicker will be driving the betatron motion of the particle resonantly

only when ν0 is close to νβ. Thus, we expect F (a, y
N
) to dominate over F (b, y

N
) in

Eq. (3.3). For this reason, F (b, y
N
) will be dropped. The envelope of the transverse

displacement at the collimator can therefore be written as

|xc| =
√
βkβc εk

∣∣F (a, y
N
)
∣∣ , (3.8)

where βc is the betatron function at the collimator. The normalized envelope of par-

ticle displacement is therefore given by
∣∣F (a, y

N
)
∣∣ and depends on only two variables

a and y
N
. It will be independent of the modulated phase ψ0 as well as the phase

advance φ of the collimator ahead of the kicker. Here, a measures the deviation of

the kicker modulated tune from the betatron tune of the particle beam, while y
N

mea-

sures the number of times the particle beam passes through the kicker. Notice that in

Eq. (3.8), |xc|/
√
βc is just the square root of the acceptance of the collimator system.

Figure 1 shows the normalized envelopes for various values of a from 0 to 2.47. We

have also performed simulations employing a kicker having center tune ν0 = 0.203

with rms spread σν = 0.005. The particle tune νβ was varied from |ν0 − νβ| = 0

to 0.0175 or 3.5σν . The simulation results are also plotted in Fig. 1. We see that

the computed envelopes do agree very well with the simulated particle amplitudes

although the term F (b, y
N
) has been discarded.

3.1 Particle tune right at kicker center tune

This is the situation when the particle betatron motion is driven resonantly by the

kicker center tune. Here, a = 0 and the normalized envelope becomes

F (0, y
N
) = erf(y

N
) =




2√
π
y

N
= 2

√
2πσνN y

N
� 1 ,

1 y
N
→ ∞ ,

(3.9)

where erf(y
N
) is the error function. This is depicted in the first plot of Fig. 1. The

linear rise when y
N

� 1 signifies resonant driving, whereas the saturation when

y
N

� 1 is a result of the tune spread in the kicker. At the beginning, all tune

components of the kicker are kicking the particle turn-after-turn in phase, the particle

absorbs energy from the kicker and its betatron amplitude therefore grows linearly

with time. After some time, the kicks by different tune components are no longer in
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Figure 1: Plots showing the simulated turn-by-turn normalized particle deflection together
with the computed envelope for various particle tune offset from the kicker center tune.
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phase because of the finite tune spread σν in the kicker. The particle is not gaining

energy from all the kicker tune components and, instead returning energy back to some

kicker tune components. For this reason, the particle amplitude increases much slower

and finally saturates. This phenomenon is called Landau damping. The turning point

is around

y
N
∼ 1 or N ∼ 1√

2πσν
. (3.10)

Thus, to maintain an efficient resonant kick, the tune spread σν should be made as

small as possible. However, it must be broad enough to encompass the tune spread

in the particle beam.

3.2 Particle tune not equal to kicker center tune

The other plots in Fig. 1 are for the situations when the particle tune deviates from

the kicker center tune by |ν0 − νβ | = 0.5σν , 1.0σν , 1.5σν , 2.0σν , 2.5σν , 3.0σν , and

3.5σν . Although the envelope becomes smaller and smaller as a increases, the initial

growth rate is the same. By performing an expansion of the integral in Eq. (3.4), the

envelope initial growth rate is given by

∣∣F (a, y
N
)
∣∣ −→ 2√

π
y

N

[
1 −

(
1

3
+
a2

6

)
y2

N

]
, (3.11)

which is valid for all a when y
N
� 1. This clearly demonstrates that the envelope

growth rate will become smaller when a2 is larger or when the particle tune deviates

more from the kicker center tune. Equation (3.11) also illustrates that the envelope

is independent on the sign of a. This is to be expected so long as the kicker tune

distribution f(ν) is symmetric about the center tune ν0. In any case, the envelope

saturates at large turn number. This asymptotic behavior can be derived from the

integral in Eq. (3.4) by setting y
N
→ ∞. We obtain, for all a,

F (a,∞) = w(a) , (3.12)

and ∣∣F (a,∞)
∣∣ −→ 1 −

(
1 − 2

π

)
a2 when a� 1 . (3.13)

Again, we see that the asymptotic envelope is reduced when a2 increases.
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This asymptotic envelope, however, only serves as a reference, because the enve-

lope overshoots this value whenever a 6= 0. In fact, the envelope may make many

oscillations as illustrated in Fig. 1 before it settles down to the asymptotic value. This

first maximum is important because we would like the particles to hit the collimator

there. Unfortunately, it is not possible to express this first maximum in simple ana-

lytic form. Instead, we solve for it numerically with the results depicted in Figs. 2 and

3. This first maximum of the envelope decreases and occurs earlier when the particle

tune deviates from the kicker center tune. Notice that the first maximum of the en-

velope is reduced roughly by a factor of two when the particle tune deviation is ±σν ,
and this value should be taken into account when designing the kicker parameters.

3.3 Kicker strength

The dimensionless kicker strength εk is given by Eq. (3.7). Notice that it contains

all the properties of the kicker and is normalized to the rms modulation tune spread

σν . In the situation that the modulation tune spread is very small and the particle

tune is inside the spread, we expect the particle amplitude to grow linearly for a large

number of turns N <∼ 1/(
√

2πσν). Then, the normalized envelope of displacement∣∣F ∣∣ ∼ 2y
N
/
√
π = 2

√
2πσνN is still less than unity according to the plots in Fig. 1. The

actual growth is given by the multiplication with εk which exhibits the enhancement

by having σν in the denominator.

4 APPLICATIONS

4.1 SNS PSR

The SNS PSR has a circumference of 248.00 m, or 945.39 ns at the injection and

storage kinetic energy of 1.0 GeV or β = 0.8750. The beam occupies about 2
3

of the

ring, leaving a gap of ∼ 315 ns. Thus, there is plenty of space to install the resonant

kicker.

Since there are only very small amount of beam particles that wander into the

bunch gap, the space charge force plays no role here and we should use the bare

betatron tunes of the ring, which are νβ = 6.23 in the horizontal and 6.20 in the

vertical. For those particles that make their way into the bunch gap, they must have

9



Figure 2: The first maximum of the response envelope is shown as solid. It decreases as
the particle tune νβ deviates from the kicker center tune ν0. The envelope at infinite turns
is also plotted in dashes and is always less than the first maximum except when ν0 = νβ.

Figure 3: The first maximum of the response envelope is shown to occur at earlier turns
as the particle tune deviates from the kicker center tune (or |a| increases), in accord to the
fact that the initial envelope growth is a-independent.
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undergone a rather large change in momentum. As a result, chromaticity effect should

contribute mostly to the tune spread. The bucket height in the longitudinal phase

space has a momentum spread of δ ∼ 0.1. With the horizontal/vertical chromaticity

−7.9/ − 6.9, the horizontal/vertical rms tune spread is roughly σν = 0.0324/0.0282.

Thus, the resonant kicker should be modulated at [νβ]f0 = 243/211 kHz with a rms

spread of σνf0 = 34.1/29.8 kHz.

Looking into Fig. 1, it is reasonable to run the kicker at such a strength that

particles will be removed at y
N

∼ 1 when the envelope function is |F | ∼ 1
2
. This

implies particle removal in N = y
N
/(
√

2πσν) ∼ 7 to 8 turns.

The SNS PSR is equipped with collimators with acceptance at about 140 πmm-

mr. If the horizontal/vertical kicker is situated at a location where the corresponding

betatron function is at a maximum (27.9 m horizontally and 15.7 m vertically), the

strength of the kicker required turns out to be (∆x′)k = 4
√

2πσνεk = 0.0014/0.0017.

4.2 LANL PSR

The LANL PSR has a circumference of 90.2 m. It receives chopped proton beams

from a linac in 1000 to 2000 turns at the kinetic energy of 797 MeV. The beam is

bunched by a rf buncher to the desired length and is then extracted for experimental

use. The beam usually occupies less than 2
3

of the ring. At high intensity, the strong

space charge force overcomes the rf force and pushes particles into the bunch gap.

These are the particles we would like to clean up. Since e-p coupled-beam instability

occurs mostly in the vertical direction, we should design a resonant kicker in the

vertical direction.

The bare vertical betatron tune is νβ = 2.19; the kicker should be modulated at

[νβ]f0 = 531 kHz. where f0 = 2.796 MHz is the revolution frequency. The maximum

vertical betatron function is 14.5 m and the beam pipe has a vertical radius of 4.8 cm.

If we assume collimation takes place at 4.0 cm and also the collimators and kicker

are situated at locations where the vertical betatron function is at the maximum, the

required reduced kicker strength is εk = 0.0055, where again an envelope function of

|F | = 1
2

has been used. An ACCSIM [4] simulation shows that [5], at the intensity

of 7.3 µC, the rf bucket height is reduced to ±3.65 MeV (Fig. 4, implying that

beam particles leaking into the bunch gap will have such energy offset. The vertical

chromaticity has been measured to be ξy = −2.4. This gives an rms spread of the
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Figure 4: Simulation of a PSR bunch with an intensity of 7.3 µC at the buncher voltage
of 13 kV using the code ACCSIM. The left plot is the result without space charge while
the right plot is the result with space charge included. Notice that in the presence of space
charge the bucket height is reduced from ±4.80 MeV by 24% to ±3.65 MeV. The top curve
on the right shows the space charge voltage per turn (proportional to the spatial derivative
of the proton line density).

vertical betatron tune as σν = 0.0045. The actual required kicker strength is therefore

(∆x′)k = 4
√

2πσνεk = 0.00025.

4.3 Transverse-Momentum Following

The frequency modulation of the resonant kicker is rather slow, and is almost constant

during a passage of the particles in the bunch gap. Thus, instead of modulating the

kicker strength, one can also change the polarity of the kicker turn by turn following

the centroid of the beam and kick in the same direction as the transverse momentum.

For example, when the residual tune is 0.2, one follows the sequence +, +, −, −,

+, · · · . Such a method has been studied by Cousineau and Holmes [6].
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5 ALTERNATE CONSIDERATION

In the previous section, we integrated over ν first in Eq. (2.12) before summing over

the turn number `. As an alternate, here we proceed to perform the summation over

turn number ` first, leading to

~X
N

=
i

2

√
βk (∆x′)k e−iφ

∫
dνf(ν)

{
sin[π(νβ − ν)(N + 1)

]
sin π(νβ − ν)

e−iπ(νβ+ν)N−iψ0

+
sin[π(νβ + ν)(N + 1)

]
sin π(νβ + ν)

e−iπ(νβ−ν)N+iψ0

}
, (5.1)

where the initial particle displacement ~a0 has been discarded.

The modulation tune distribution f(ν) is normalized to unity. This distribution

should be centered at ν0 with spread ±∆ν, and ν0 should be chosen to be the average

tune of the particles in the bunch and ∆ν the tune spread ∆νβ in the particle bunch.

In this way, the tune νβ of a bunch particle will always be inside the distribution f(ν)

so that the particle will be kicked resonantly. We can therefore set the requirement

∣∣ν − νβ
∣∣ < ∆ν � 1 . (5.2)

As a result, for sin[π(νβ − ν)(N + 1)
]
/ sin π(νβ − ν) in the first term of the curly

brackets in Eq. (5.1), it is sufficient to consider only the contribution near ν ∼ νβ .

5.1 No Spread in kicker tune

First, let us consider the situation of no spread in the kicker modulation tune but the

particle tune is inside f(ν); i.e., f(ν) = δ(ν − νβ). It is easy to arrive at

~X
N

=
i

2

√
βk (∆x′)k e−iφ

{
(N + 1)e−i2πNνβ−iψ0 +

sin[2πνβ(N + 1)
]

sin 2πνβ
eiψ0

}
. (5.3)

The factor (N + 1) in the first term inside the curly brackets represents the linear

growth of the particle displacement as a result of resonant driving. The second term

is nonresonant, like F (b, y
N
) in Eq. (3.3), is small and can be neglected here and

below. The amplitude of displacement at the collimator agrees with what we obtain

in the first expression of Eq (3.9).
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5.2 Kicker tune spread ∆ν � 1/N

Let us consider the function

g(ν) =
sin[π(ν − νβ)(N + 1)

]
sin π(ν − νβ)

e−iπ(ν−νβ)N (5.4)

in the first term inside the curly brackets of Eq. (5.1). The function is periodic. When

N is large, it has sharp peaks of mganitude N + 1
2

at ν−νβ = k, where k is an integer

and half widths ∼ 1/(2N + 1). Because of the restriction of Eq. (5.2) provided by

f(ν), the tune spread distribution of the kicker, all the contribution of g(ν) will vanish

except for the one near ν − νβ = 0.

When the tune spread of the kicker ∆ν is very much less than 1/(N + 1), we can

treat the kicker tune distribution f(ν) as a δ-function, namely f(ν) = δ(ν− ν0). The

integration over ν in Eq. (5.1) will pick up the value of g(ν) at ν0. The result is

~X
N
≈ i

2

√
βk (∆x′)k g(ν0) e

−i2πνβN−iψ0−iφ . (5.5)

Thus, when the particle tune νβ is equal to the center tune ν0 of the kicker, g(ν0) =

N + 1, and we recover the result of resonant driving in Eq. (5.3). When νβ deviates

from ν0, the accumulated kicked displacement drops sharply according to g(νβ) and

becomes insignificant when |νβ − ν0| >∼ 1/N .

5.3 Kicker tune spread ∆ν � 1/N

This is the situation when N � 1 and we should obtain the asymptotic bound of the

displacement envelope. When the spread of f(ν) is very much larger than the spread

of g(ν), the latter approaches§ in the vicinity of ν = νβ ,

g(ν) =
1

2
δ(ν − νβ) −

i

π

P
ν − νβ

, (5.7)

§It is important that the factor e−iπ(ν−νβ)N must be included in g(ν) as a whole when the limit
N → ∞ is taken. This is because e−iπ(ν−νβ)N is not a smoothly varying function in the vicinity of
ν = νβ . If it were not included in g(ν), one would obtain instead the incorrect result

lim
N=∞

sin[π(ν − νβ)(N + 1)
]

sin π(ν − νβ)
ν∼νβ= δ(ν − νβ) , (5.6)

which is twice as big.
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where P represents the principal value. The displacement at the collimator after N

turns becomes
~X

N
≈ i

4

√
βk (∆x′)k f(νβ) e

−i2πνβN−iψ0−iφ . (5.8)

For a flat distribution

f(ν) =




1

2∆ν
|ν − ν0| < ∆ν

0 otherwise ,

(5.9)

the accumulated particle displacement is bounded by

∣∣xc∣∣ ≈ √
βkβc (∆x

′)k
1

8∆ν
. (5.10)

In the case of a Gaussian distribution with rms spread σν , f(ν) is given by Eq. (3.1).

The asymptotic bound is therefore

∣∣xc∣∣ ≈ 1

4

√
βkβc (∆x

′)k
1√

2πσν
e−(νβ−ν0)2/(2σ2

ν ) =
√
βkβc εk e

−a2 , (5.11)

where the last result has been written in terms of the kicker strength εk defined in

Eq. (3.7) and the normalized tune offset a defined in Eq. (3.5). We obtain similar

conclusion as in the previous section. The presence of a tune spread in the kicker

limits the accumulated growth of the particle displacement. For the simple case

when νβ = ν0, the growth of the displacement is initially linear in turn number and

becomes saturated when N ∼ 1/∆ν. Thus although large spread in the kicker tune

will encompass a wider range of betatron tune in the particle bunch, however, it leads

to early saturation and the saturated particle displacement will be small. As a result,

the tune spread in the kicker should be chosen to be roughly the betatron tune spread

in the particle bunch.

The result of Eq. (5.11) should be compared with Eq. (3.8), the second line of

Eq. (3.9), and Eq. (3.13). We see that the correct asymptotic bound in Eq. (5.11)

has been reproduced.
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